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Context

I Interested in invariant quadratic forms associated to linear
algebraic groups.

I S. Garibaldi, A. Merkurjev, J.-P. Serre construct Q(G ) in [1].

I Q(G ) Appears in work by S. Garibaldi [2], S. Baek [3], as well
as by A. Merkurjev, A. Neshitov, and K. Zainoulline [4]
relating to cohomological invariants of linear algebraic groups.
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Linear Algebraic Group

I Let G be a split, semisimple, linear algebraic group (over an
alg. closed field F) with a maximal torus T .

I G has a root system Φ ⊆ T ∗ with Weyl group W .

I W acts on Φ by permuting its elements, but since W is
crystallographic this action extends to all of T ∗.

I In particular W acts on the symmetric tensor product S(T ∗),
and so we can discuss invariant quadratic forms.

I S2(T ∗)W = Q(G ).
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Killing Forms

I An example of a fixed element is the Killing form K =
∑
α∈Φ

α2.

I Analagous to the Killing form in Lie theory,
K(x , y) = Tr(ad(x) ad(y)) on Lie(G ).
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W-Invariants

I When G is a simple group, S2(T ∗)W = Z〈q〉 where q is called
the normalized Killing form.

I If G is semisimple, S2(T ∗)W = Z〈q1〉 ⊕ . . .⊕ Z〈qm〉.
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Examples

Group Killing Form Normalized Killing Form

SL(V ), dim(V ) = n + 1 4(n + 1)
n∑

i,j=1
i≤j

eiej
n∑

i,j=1
i≤j

eiej

SO(V ), dim(V ) = 2n 4(n − 1)
n∑

i=1
e2
i

n∑
i=1

e2
i

SO(V ), dim(V ) = 2n + 1 4(n − 2)
n∑

i=1
e2
i

n∑
i=1

e2
i

Sp(V ), dim(V ) = 2n 4(n + 1)
n∑

i=1
e2
i

n∑
i=1

e2
i

Where in call cases T ∗ = 〈ei | 1 ≤ i ≤ n〉.
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Induced Map on W-Invariants

I Q(G ) is functorial. If ρ : G → H is a homomorphism we have

ρ∗ : S2(T ∗H)W → S2(T ∗G )W

I Since S2(T ∗H)W is generated by some normalized Killing forms
q1, . . . , qm, this map is described by their images, called the
Rost multpliers of ρ.
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Kroenecker Tensor Product Map

I The tensor product map

ρ : GL(V1)× GL(V2)→ GL(V1 ⊗ V2)

(A,B) 7→ A⊗ B

I If A =

 a11 . . . a1n
...

...
an1 . . . ann

, A⊗ B =

 a11B . . . a1nB
...

...
an1B . . . annB

.

I In general we consider

ρ : GL(V1)× . . .× GL(Vm)→ GL(V1 ⊗ . . .⊗ Vm)

(A1, . . . ,Am) 7→ A1 ⊗ . . .⊗ Am
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Kroenecker Tensor Product Map

I Consider restrictions of this map to the special linear, special
orthogonal, and symplectic groups.

I For the following cases
I G1, . . . ,Gn,H = SL
I G1, . . . ,G2m = Sp

G2m+1, . . . ,Gn = SO
H = SO

I G1, . . . ,G2m+1 = Sp
G2m+2, . . . ,Gn = SO
H = Sp

we consider

ρ : G1(V1)× . . .× Gn(Vn)→ H(V1 ⊗ . . .⊗ Vn)
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Example Computation of ρ∗

ρ : SO(F2n+1)× SO(F2m+1)→ SO(F(2n+1)(2m+1))

I Choose T2n+1 = {diag(t1, . . . , tn, 1, t
−1
n , . . . , t−1

1 ) | ti ∈ F×}
and others similarily.

I T ∗2n+1 = 〈ei | 1 ≤ i ≤ n〉 where ei (diag(t1, . . . , t
−1
1 )) = ti .

T ∗(2n+1)(2m+1) = 〈fi | 1 ≤ i ≤ 2nm + n + m〉
I

ρ∗(fi ) =



0 ≤ k ≤ n − 1
(ek+1, er ) 1 ≤ r ≤ m
(ek+1, 0) r = m + 1
(ek+1,−e2m+2−r ) m + 2 ≤ r ≤ 2m + 1

k = n
(0, er ) 1 ≤ r ≤ m

where i = k(2m + 1) + r with 0 ≤ k ≤ 2n and
1 ≤ r ≤ 2m + 1.
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Example Computation of ρ∗

I ρ∗(q(2n+1)(2m+1)) = ρ∗
(

2nm+n+m∑
i=1

f 2
i

)
=

2nm+n+m∑
i=1

ρ∗(fi )
2.

I
...

I ((2m + 1)q2n+1, (2n + 1)q2m+1).
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Results

Theorem
Let V1, . . . ,Vn be vector spaces such that dim(Vi ) = di . Consider
linear algebraic groups G1, . . . ,Gn,H in one of the previous
configurations (where Gi = Sp only when di is even).
Consider the Kronecker product map

ρ : G1(V1)× . . .× Gn(Vn)→ H(V1 ⊗ . . .⊗ Vn)

and let q1, . . . , qn, qH be the respective normalized Killing forms.
Then

ρ|∗n(qH) =(
(d2 . . . dn)q1, . . . , (d1 . . . d̂i . . . dn)qi , . . . , (d1 . . . dn−1)qn

)
where d̂i represents ommision.
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Thank You.
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