Killing Forms, W-Invariants, and the Tensor Product Map

Cameron Ruether
University of Ottawa

Combinatorics of Group Actions and its Applications Memorial University
August 28, 2017

Context

- Interested in invariant quadratic forms associated to linear algebraic groups.

Context

- Interested in invariant quadratic forms associated to linear algebraic groups.
- S. Garibaldi, A. Merkurjev, J.-P. Serre construct $Q(G)$ in [1].

Context

- Interested in invariant quadratic forms associated to linear algebraic groups.
- S. Garibaldi, A. Merkurjev, J.-P. Serre construct $Q(G)$ in [1].
- Q(G) Appears in work by S. Garibaldi [2], S. Baek [3], as well as by A. Merkurjev, A. Neshitov, and K. Zainoulline [4] relating to cohomological invariants of linear algebraic groups.

Linear Algebraic Group

- Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.

Linear Algebraic Group

- Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.
- G has a root system $\Phi \subseteq T^{*}$ with Weyl group W.

Linear Algebraic Group

- Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.
- G has a root system $\Phi \subseteq T^{*}$ with Weyl group W.
- W acts on Φ by permuting its elements, but since W is crystallographic this action extends to all of T^{*}.

Linear Algebraic Group

- Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.
- G has a root system $\Phi \subseteq T^{*}$ with Weyl group W.
- W acts on Φ by permuting its elements, but since W is crystallographic this action extends to all of T^{*}.
- In particular W acts on the symmetric tensor product $\mathrm{S}\left(T^{*}\right)$, and so we can discuss invariant quadratic forms.

Linear Algebraic Group

- Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.
- G has a root system $\Phi \subseteq T^{*}$ with Weyl group W.
- W acts on Φ by permuting its elements, but since W is crystallographic this action extends to all of T^{*}.
- In particular W acts on the symmetric tensor product $\mathrm{S}\left(T^{*}\right)$, and so we can discuss invariant quadratic forms.
- $\mathrm{S}^{2}\left(T^{*}\right)^{W}=\mathrm{Q}(G)$.

Killing Forms

- An example of a fixed element is the Killing form $\mathcal{K}=\sum_{\alpha \in \Phi} \alpha^{2}$.

Killing Forms

- An example of a fixed element is the Killing form $\mathcal{K}=\sum_{\alpha \in \Phi} \alpha^{2}$.
- Analagous to the Killing form in Lie theory, $\mathcal{K}(x, y)=\operatorname{Tr}(\operatorname{ad}(x) \operatorname{ad}(y))$ on $\operatorname{Lie}(G)$.

W-Invariants

- When G is a simple group, $S^{2}\left(T^{*}\right)^{W}=\mathbb{Z}\langle q\rangle$ where q is called the normalized Killing form.

W-Invariants

- When G is a simple group, $S^{2}\left(T^{*}\right)^{W}=\mathbb{Z}\langle q\rangle$ where q is called the normalized Killing form.
- If G is semisimple, $S^{2}\left(T^{*}\right)^{W}=\mathbb{Z}\left\langle q_{1}\right\rangle \oplus \ldots \oplus \mathbb{Z}\left\langle q_{m}\right\rangle$.

Examples

Group	Killing Form	Normalized Killing Form
$\mathrm{SL}(V), \operatorname{dim}(V)=n+1$	$4(n+1) \sum_{\substack{i, j=1 \\ i \leq j}}^{n} e_{i} e_{j}$	$\sum_{\substack{i, j=1 \\ i \leq j}}^{n} e_{i} e_{j}$
$\mathrm{SO}(V), \operatorname{dim}(V)=2 n$	$4(n-1) \sum_{i=1}^{n} e_{i}^{2}$	$\sum_{i=1}^{n} e_{i}^{2}$
$\mathrm{SO}(V), \operatorname{dim}(V)=2 n+1$	$4(n-2) \sum_{i=1}^{n} e_{i}^{2}$	$\sum_{i=1}^{n} e_{i}^{2}$
$\operatorname{Sp}(V), \operatorname{dim}(V)=2 n$	$4(n+1) \sum_{i=1}^{n} e_{i}^{2}$	$\sum_{i=1}^{n} e_{i}^{2}$

Where in call cases $T^{*}=\left\langle e_{i} \mid 1 \leq i \leq n\right\rangle$.

Induced Map on W-Invariants

- $\mathrm{Q}(G)$ is functorial. If $\rho: G \rightarrow H$ is a homomorphism we have

$$
\rho^{*}: \mathrm{S}^{2}\left(T_{H}^{*}\right)^{W} \rightarrow \mathrm{~S}^{2}\left(T_{G}^{*}\right)^{W}
$$

Induced Map on W-Invariants

- $Q(G)$ is functorial. If $\rho: G \rightarrow H$ is a homomorphism we have

$$
\rho^{*}: \mathrm{S}^{2}\left(T_{H}^{*}\right)^{W} \rightarrow \mathrm{~S}^{2}\left(T_{G}^{*}\right)^{W}
$$

- Since $S^{2}\left(T_{H}^{*}\right)^{W}$ is generated by some normalized Killing forms q_{1}, \ldots, q_{m}, this map is described by their images, called the Rost multpliers of ρ.

Kroenecker Tensor Product Map

- The tensor product map

$$
\begin{aligned}
\rho: \mathrm{GL}\left(V_{1}\right) \times \mathrm{GL}\left(V_{2}\right) & \rightarrow \mathrm{GL}\left(V_{1} \otimes V_{2}\right) \\
(A, B) & \mapsto A \otimes B
\end{aligned}
$$

Kroenecker Tensor Product Map

- The tensor product map

$$
\begin{aligned}
& \rho: \mathrm{GL}\left(V_{1}\right) \times \mathrm{GL}\left(V_{2}\right) \rightarrow \mathrm{GL}\left(V_{1} \otimes V_{2}\right) \\
&(A, B) \mapsto A \otimes B \\
& \text { - If } A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right], A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \ldots & a_{1 n} B \\
\vdots & & \vdots \\
a_{n 1} B & \ldots & a_{n n} B
\end{array}\right] .
\end{aligned}
$$

Kroenecker Tensor Product Map

- The tensor product map

$$
\begin{aligned}
\rho: \mathrm{GL}\left(V_{1}\right) \times \mathrm{GL}\left(V_{2}\right) & \rightarrow \mathrm{GL}\left(V_{1} \otimes V_{2}\right) \\
(A, B) & \mapsto A \otimes B
\end{aligned}
$$

- If $A=\left[\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right], A \otimes B=\left[\begin{array}{ccc}a_{11} B & \ldots & a_{1 n} B \\ \vdots & & \vdots \\ a_{n 1} B & \ldots & a_{n n} B\end{array}\right]$.
- In general we consider

$$
\begin{aligned}
\rho: \mathrm{GL}\left(V_{1}\right) \times \ldots \times \mathrm{GL}\left(V_{m}\right) & \rightarrow \mathrm{GL}\left(V_{1} \otimes \ldots \otimes V_{m}\right) \\
\left(A_{1}, \ldots, A_{m}\right) & \mapsto A_{1} \otimes \ldots \otimes A_{m}
\end{aligned}
$$

Kroenecker Tensor Product Map

- Consider restrictions of this map to the special linear, special orthogonal, and symplectic groups.

Kroenecker Tensor Product Map

- Consider restrictions of this map to the special linear, special orthogonal, and symplectic groups.
- For the following cases
- $G_{1}, \ldots, G_{n}, H=S L$
- $G_{1}, \ldots, G_{2 m}=S p$
$G_{2 m+1}, \ldots, G_{n}=\mathrm{SO}$
$H=$ SO
- $G_{1}, \ldots, G_{2 m+1}=S p$
$G_{2 m+2}, \ldots, G_{n}=\mathrm{SO}$
$H=S p$
we consider

$$
\rho: G_{1}\left(V_{1}\right) \times \ldots \times G_{n}\left(V_{n}\right) \rightarrow H\left(V_{1} \otimes \ldots \otimes V_{n}\right)
$$

Example Computation of ρ^{*}

$$
\rho: \mathrm{SO}\left(\mathbb{F}^{2 n+1}\right) \times \mathrm{SO}\left(\mathbb{F}^{2 m+1}\right) \rightarrow \mathrm{SO}\left(\mathbb{F}^{(2 n+1)(2 m+1)}\right)
$$

Example Computation of ρ^{*}

$$
\rho: \mathrm{SO}\left(\mathbb{F}^{2 n+1}\right) \times \mathrm{SO}\left(\mathbb{F}^{2 m+1}\right) \rightarrow \mathrm{SO}\left(\mathbb{F}^{(2 n+1)(2 m+1)}\right)
$$

- Choose $T_{2 n+1}=\left\{\operatorname{diag}\left(t_{1}, \ldots, t_{n}, 1, t_{n}^{-1}, \ldots, t_{1}^{-1}\right) \mid t_{i} \in \mathbb{F}^{\times}\right\}$ and others similarily.

Example Computation of ρ^{*}

$$
\rho: \mathrm{SO}\left(\mathbb{F}^{2 n+1}\right) \times \mathrm{SO}\left(\mathbb{F}^{2 m+1}\right) \rightarrow \mathrm{SO}\left(\mathbb{F}^{(2 n+1)(2 m+1)}\right)
$$

- Choose $T_{2 n+1}=\left\{\operatorname{diag}\left(t_{1}, \ldots, t_{n}, 1, t_{n}^{-1}, \ldots, t_{1}^{-1}\right) \mid t_{i} \in \mathbb{F}^{\times}\right\}$ and others similarily.
- $T_{2 n+1}^{*}=\left\langle e_{i} \mid 1 \leq i \leq n\right\rangle$ where $e_{i}\left(\operatorname{diag}\left(t_{1}, \ldots, t_{1}^{-1}\right)\right)=t_{i}$. $T_{(2 n+1)(2 m+1)}^{*}=\left\langle f_{i} \mid 1 \leq i \leq 2 n m+n+m\right\rangle$

Example Computation of ρ^{*}

$$
\rho: \mathrm{SO}\left(\mathbb{F}^{2 n+1}\right) \times \mathrm{SO}\left(\mathbb{F}^{2 m+1}\right) \rightarrow \mathrm{SO}\left(\mathbb{F}^{(2 n+1)(2 m+1)}\right)
$$

- Choose $T_{2 n+1}=\left\{\operatorname{diag}\left(t_{1}, \ldots, t_{n}, 1, t_{n}^{-1}, \ldots, t_{1}^{-1}\right) \mid t_{i} \in \mathbb{F}^{\times}\right\}$ and others similarily.
- $T_{2 n+1}^{*}=\left\langle e_{i} \mid 1 \leq i \leq n\right\rangle$ where $e_{i}\left(\operatorname{diag}\left(t_{1}, \ldots, t_{1}^{-1}\right)\right)=t_{i}$. $T_{(2 n+1)(2 m+1)}^{*}=\left\langle f_{i} \mid 1 \leq i \leq 2 n m+n+m\right\rangle$

$$
\rho^{*}\left(f_{i}\right)=\left\{\begin{array}{lc}
& 0 \leq k \leq n-1 \\
\left(e_{k+1}, e_{r}\right) & 1 \leq r \leq m \\
\left(e_{k+1}, 0\right) & r=m+1 \\
\left(e_{k+1},-e_{2 m+2-r}\right) & m+2 \leq r \leq 2 m+1 \\
& k=n \\
\left(0, e_{r}\right) & 1 \leq r \leq m
\end{array}\right.
$$

where $i=k(2 m+1)+r$ with $0 \leq k \leq 2 n$ and $1 \leq r \leq 2 m+1$.

Example Computation of ρ^{*}

$$
\text { - } \rho^{*}\left(q_{(2 n+1)(2 m+1)}\right)=\rho^{*}\left(\sum_{i=1}^{(2 n m+n+m} f_{i}^{2}\right)=\sum_{i=1}^{2 n m+n+m} \rho^{*}\left(f_{i}\right)^{2} \text {. }
$$

Example Computation of ρ^{*}

$-\rho^{*}\left(q_{(2 n+1)(2 m+1)}\right)=\rho^{*}\left(\sum_{i=1}^{2 n m+n+m} f_{i}^{2}\right)=\sum_{i=1}^{2 n m+n+m} \rho^{*}\left(f_{i}\right)^{2}$. -

Example Computation of ρ^{*}

$-\rho^{*}\left(q_{(2 n+1)(2 m+1)}\right)=\rho^{*}\left(\sum_{i=1}^{2 n m+n+m} f_{i}^{2}\right)=\sum_{i=1}^{2 n m+n+m} \rho^{*}\left(f_{i}\right)^{2}$.
-

- $\left((2 m+1) q_{2 n+1},(2 n+1) q_{2 m+1}\right)$.

Results

Theorem

Let V_{1}, \ldots, V_{n} be vector spaces such that $\operatorname{dim}\left(V_{i}\right)=d_{i}$. Consider linear algebraic groups G_{1}, \ldots, G_{n}, H in one of the previous configurations (where $G_{i}=S p$ only when d_{i} is even).
Consider the Kronecker product map

$$
\rho: G_{1}\left(V_{1}\right) \times \ldots \times G_{n}\left(V_{n}\right) \rightarrow H\left(V_{1} \otimes \ldots \otimes V_{n}\right)
$$

and let $q_{1}, \ldots, q_{n}, q_{H}$ be the respective normalized Killing forms. Then

$$
\begin{aligned}
& \left.\rho\right|_{n} ^{*}\left(q_{H}\right)= \\
& \left(\left(d_{2} \ldots d_{n}\right) q_{1}, \ldots,\left(d_{1} \ldots \hat{d}_{i} \ldots d_{n}\right) q_{i}, \ldots,\left(d_{1} \ldots d_{n-1}\right) q_{n}\right)
\end{aligned}
$$

where \hat{d}_{i} represents ommision.

Thank You.

囦 S．Garibaldi，A．Merkurjev，and J．－P．Serre．Cohomological Invariants in Galois Cohomology．University Lecture Series 28， AMS，Providence，RI， 2003.

囯 S．Garibaldi．Orthogonal Involutions on Algebras of Degree 16 and the Killing Form of E_{8} ．Contemporary Mathematics Volume 493， 2009.
S．Baek．Chow Groups of Products of Severi－Brauer Varieties and Invariants of Degree 3．arXiv：1502．03023v2， 2015.
围 A．Merkurjez，A．Neshitov，and K．Zainoulline．Invariants of Degree 3 and Torsion in the Chow Group of a Versal Flag． Composito Mathematica 151，pg 1416－1432， 2015.

